Fuseology
Design Guide

A guide to selecting the right fuse for your application
About This Guide

Fuses are current sensitive devices that provide reliable protection for systems, components, or circuits by melting under current overload conditions. Choosing the right fuse for your application can be an overwhelming, time-consuming process, even for a seasoned electronics design engineer. This user-friendly Fuseology Design Guide makes the fuse selection process quick and easy, helping you optimize the reliability and performance of the application.

Littelfuse: Everywhere, Every Day

Founded in 1927, Littelfuse has become the world’s most respected circuit protection brand, with well-established and growing platforms in power control and sensing technologies. Today, we are a global company, offering a diverse and extensive product portfolio—fuses, semiconductors, polymers, ceramics, relays, sensors, and more—serving the electronics, transportation, and industrial markets. Each product is manufactured to exacting quality standards and backed by an unwavering commitment to technical support and customer service.

Our history of innovation, combined with our customer-first culture, drives us to collaborate with you to develop safer, more reliable products that are energy efficient and compliant with global regulations. We will partner with you to solve complex problems wherever electrical energy is used, bringing design, engineering, and technical expertise to deliver business results.

Why Choose Littelfuse

Complementing our wide portfolio of circuit protection products is a global network of design and technical support expertise. We offer decades of design experience to help you address application challenges and achieve regulatory compliance.

Your Single Source

Littelfuse offers an extensive circuit protection product line. We design forward-thinking, application-specific solutions to help you address application challenges and achieve regulatory compliance.

Testing Support

Littelfuse can help ensure that your products will withstand most common threats repeatedly and will fail safely under extreme circumstances. We can serve as an independent source to provide assistance as you design by offering lab testing capabilities. With more than 15 locations worldwide, Littelfuse labs are equipped to provide testing that includes overcurrent, overvoltage, Electrostatic Discharge (ESD), temperature, failure analysis, material analysis, and application performance.

Application Knowledge

For over 95 years, Littelfuse has maintained a focus on circuit protection, and we will continue to adapt as technologies evolve. Engineers and circuit designers around the world have come to rely on Littelfuse products and application knowledge to support their designs.

Global Support

Littelfuse stays close to customers. With manufacturing, lab, and design facilities located around the globe, application knowledge and technical support are locally available. Also, we offer a network of regional customer support offices and hundreds of independent authorized distributor contacts to assist you. Visit Littelfuse.com/contact-us to find local support near you.

Standards Compliance Expertise

Most Littelfuse products comply with a wide range of applicable industry and government guidelines as well as our own rigorous quality and reliability criteria. We continually look forward and adapt to changing requirements so that our products will comply with industry-specific national and international standards and regulations, such as CCC, CSA, IEC, IEEE, ISO, ITU, MIETI (Ministry of Economy, Trade and Industry), RoHS (Reduction of Hazardous Substances), Telcordia, T1A, and many more.

Operational Excellence

With our global manufacturing footprint, Littelfuse is firmly committed to manufacturing quality products at a competitive price. We build quality into our products and services, aiming for zero defects in everything we do, thereby reducing cost and increasing your total satisfaction. We strive to exceed your expectations every day.

Quality Assurance

Our global manufacturing facilities abide by strict quality assurance requirements and hold the following quality management system registrations:

- ISO 9001
- ISO 14001
- IATF 16949

Specifications, descriptions, and illustrative material in this literature are as accurate as known at the time of publication, but are subject to change without notice. Visit Littelfuse.com for more information.
Fuse Characteristics, Terms, and Consideration Factors

The purpose of this introductory section is to promote a better understanding of both fuses and common application details within circuit design.

The fuses to be considered are current-sensitive devices designed to serve as the intentional weak links in the electrical circuit. Their function is to provide protection of discrete components, or of complete circuits, by reliably melting under overcurrent conditions.

This section will cover some important facts about fuses, selection considerations, and standards.

The application guidelines and product data in this guide are intended to provide technical information that will help with application design. The fuse parameters and application concepts presented should be well understood in order to properly select a fuse for a given application.

Since these are only a few of the contributing parameters, application testing is strongly recommended and should be used to verify performance in the circuit/application.

Littelfuse reserves the right to make changes in product design, processes, manufacturing location, and information without notice. For current Littelfuse product information, visit our website at littelfuse.com.

Ambient Temperature

Refers to the temperature of the air immediately surrounding the fuse and is not to be confused with “room temperature.” The fuse ambient temperature is appreciably higher in many cases, because it is enclosed (as in a panel mount fuseholder) or mounted near other heat-producing components, such as resistors, transformers, etc.

Current Rating

The nominal ampere rating value of the fuse. It is established by the manufacturer as a value of current that the fuse can carry based on a controlled set of test conditions (see Rating section).

Catalog fuse part numbers include series identification and ampere ratings. Refer to the Fuse Selection Checklist section for guidance on making the proper choice.

Rating

For 25 °C ambient temperature, it is recommended that fuses be operated at or not more than 75% of the nominal current rating established using the controlled test conditions. These test conditions are part of UL/CSA/ANCE 248-14 “Fuses for Supplementary Overcurrent Protection,” whose primary objective is to specify common test conditions necessary for the continued control of manufactured items intended for protection against fire, shock, etc. Some common variations of these conditions include:

- Fully enclosed fuseholders, high contact resistances, air movement, transient spikes, and a usable minimum cable size (diameter and length).
- Fuses are essentially temperature-sensitive devices. Even small variations from the controlled test conditions can greatly affect the predicted life of a fuse when it is loaded to its nominal value, usually expressed as 100% of rating.

The circuit design engineer should clearly understand that the purpose of these controlled test conditions is to enable fuse manufacturers to maintain unified performance standards for their products, and must account for the variable conditions of the application. To compensate for these variables, the circuit design engineer who is designing for trouble-free, long-life fuse protection in the equipment generally loads the fuse not more than 75% of the nominal rating listed by the manufacturer, keeping in mind that overload and short circuit protection must be adequately provided for.

The fuses under discussion are temperature-sensitive devices whose ratings have been established in a 25 °C ambient. The fuse temperature generated by the current passing through the fuse increases or decreases with ambient temperature change.

The temperature rating curves in the Fuse Selection Checklist section illustrate the effect that ambient temperature has on the normal current rating of a fuse. Most traditional Slo-Blo® fuse designs use lower melting temperature materials and are, therefore, more sensitive to ambient temperature changes.

Dimensions

The fuses in this catalog range in size from the approximately 0402 chip size (0.141”×0.200”×0.012”) up to the 5 AG (13/32” diameter×11/2” length). As new products were developed throughout the years, fuse sizes evolved to fill the various electrical circuit protection needs.

The first fuses were simple, open-wire devices, followed in the 1890s by Edison’s enclosure of thin wire in a lamp base to make the first plug fuse. By 1904, Underwriters Laboratories had established size and rating specifications to meet safety standards. Renewable-type fuses and automotive fuses appeared in 1914, and in 1927 Littelfuse started making very low amperage fuses for the automobile industry.

The cartridge fuse sizes in following chart began with the early “Automobile Glass” fuses, thus the term “AG.” The numbers were applied chronologically as different manufacturers started making a new size: “3AG,” for example, was the third size placed in 1927 Littelfuse started making very low amperage fuses for the automobile industry. The fuse sizes evolved to fill the various electrical circuit protection needs.

Fuse Characteristics

The characteristic of a fuse design refers to how rapidly it responds to various current overload. Fuse characteristics can be classified into three general categories: very fast-acting, fast-acting, or Slo-Blo®. The distinguishing feature of Slo-Blo® fuses is that they have additional thermal inertia designed to tolerate normal initial or start-up overload pulses.

Fuse Construction

Internal construction may vary, depending on form factor and Amperage rating.

Fuseholders

In many applications, fuses are installed in fuseholders. Fuses and their associated fuseholders are not intended for operation as a “switch” for turning power “on” and “off.”

Interrupting Rating

Also known as breaking capacity or short circuit rating, the interrupting rating is the maximum approved current that the fuse can safely interrupt at rated voltage. During a fault or short circuit condition, the fuse may experience an instantaneous over current many times greater than its normal operating current.

Safe operation requires that the fuse remain intact (no explosion or body rupture) and clear the circuit. Interrupting ratings may vary with fuse design and can range from 35 to 300 KEA. The metric-size (5×20mm) fuses up to 200,000 A for the 600 V, KLK series. Information on other fuse series can be obtained from littelfuse.com.

Fuses listed in accordance with UL/CSA/ANCE 248 are required to have an interrupting rating of 10,000 A at 125 V, with some exceptions (See Standards and Certifications section), which, in many applications, provides a safety factor far in excess of the short circuit currents available.

Nuisance Opening

Nuisance opening is a term used to describe undesired opening of a fuse in an application. This is most often the result of a fuse being selected without a complete analysis of the circuit under consideration. Of all the “selection factors” listed in the Fuse Selection Checklist, special attention must be given to items 1, 3, and 6; namely, normal operating current, ambient temperature, and pulses.

For example, one prevalent cause of nuisance opening in conventional power supplies is the failure to adequately consider the fuse’s nominal melting IT rating. The fuse cannot be selected solely on the basis of normal operating current and ambient temperature. In this application, the fuse’s nominal melting IT rating must be determined as a value created by the input capacitor of the power supply’s smoothing filter.

The procedure for converting various waveforms into IT circuit demand is provided in the Fuse Selection Checklist. It is good design practice to select a fuse such that the IT of the waveform is no more than 20% of the nominal melting IT rating of the fuse. Refer to section on pulses in the Fuse Selection Checklist.

Resistance

The resistance of a fuse is usually an insignificant part of the total circuit resistance. Since the resistance of fractional amperage fuses can be critical values, this factor should be considered when choosing them in low-voltage circuits. Actual values can be obtained by contacting Littelfuse.

Most fuses are manufactured from materials that have positive temperature coefficients, and, therefore, it is common to refer to cold resistance and hot resistance (voltage drop at rated current), with actual operation being somewhere in between.

Cold resistance is the resistance obtained using a measuring current of no more than 10% of the fuse’s nominal rated current. Values shown in this publication are nominal and representative. Littelfuse should be consulted if this parameter critical to the application.

Fuses are supplied in low-voltage circuits. Actual values can be obtained by contacting Littelfuse.

Soldering Recommendations

Since most fuse constructions incorporate internal soldered connection, attention should be used when installing fuses intended to be soldered in place. The application of excessive heat can reflow the solder within the fuse and change its rating.

Primary Solder Profile

Typical Solder Profile

30 – 50 sec.
40 – 60 sec.
10 – 30 sec.
30 sec.
5 sec.
5 sec.
40 sec.
100 sec.
500 sec.
100 sec.
As mentioned previously (see Rerating section), fuses are sensitive to changes in current, not voltage, containing their “status quo” at any voltage up to the maximum rating of the fuse. It is not until the fuse element melts and arcing occurs that the circuit voltage and available power become an issue. The safe interruption of the circuit, as it relates to circuit voltage and available power, is discussed in the section on Interrupting Ratings.

To summarize, a fuse may be used at any voltage that is less than its voltage rating without detriment to its fusing characteristics. Contact Littelfuse for applications at voltages greater than the voltage rating.

Derivation of Nominal Melting Pt
Laboratory tests are conducted on each fuse design to determine the amount of energy required to melt the fusing element. This energy is described as nominal melting Pt and is expressed as “ampere squared seconds” (A’s).

A pulse of current is applied to the fuse, and a time measurement is taken for melting to occur. If melting does not occur within a short duration of 8 milliseconds (0.008 seconds) or less (or 1 millisecond [0.001 seconds] or less for thin-film fuses), the level of pulse current is increased. This test procedure is repeated until melting of the fuse element is confined to within about 8 millisecond (1 millisecond for thin-film fuses).

The purpose of this procedure is to assure that the heat created has sufficient time to thermally conduct away from the fuse element. That is, all of the heat energy (I^2t) is used as described as a design aid but are not generally considered part of the fuse specification. A time-current curve represents average data for the design; however, there may be some differences in the values for any given production lot.

UL Fuses
Reference to “Listed by UL” signifies that the fuses meet the requirements of the UL/CSA/NFCE 248 series of standards. Some 32 V fuses (automotive) are listed under UL 275. Reference to “Recognized under the Component Program of UL” signifies that the item is recognized under the component program of UL and application approval is required.

Voltage Rating
The voltage rating indicates that the fuse can be relied upon to safely interrupt its rated short circuit current in a circuit where the voltage is equal to or less than its rated voltage. The voltage rating of the fuse must be equal to or greater than any voltage up to the maximum rating of the fuse. It is not until the fuse element melts and arcing occurs that the circuit voltage and available power become an issue. The safe interruption of the circuit, as it relates to circuit voltage and available power, is discussed in the section on Interrupting Ratings.

This test is a graphical representation, or performance plot, of the fusing characteristic, time-current curves. The fuse element melts and arcing occurs that the circuit voltage and available power become an issue. The safe interruption of the circuit, as it relates to circuit voltage and available power, is discussed in the section on Interrupting Ratings.

To determine the melting time for a fuse, start by locating the (overload) current on the x-axis (reference point A) as shown in the Time/Current Curve Example graph. Extend a line from point A upward until it intersects the fuse curve at point B. Then move to the left to identify the corresponding value on the y-axis (referred as point C), which represents the fuse’s pre-arcing (melting) time.
This nominal melting \(P_t \) is not only a constant value for each fuse element design, but it is also independent of temperature and voltage. Most often, the nominal melting \(P_t \) method of fuse selection is applied to those applications in which the fuse must sustain large current pulses of a short duration. These high-energy currents are common in many applications and are critical to the design analysis.

The following example should provide a better understanding of the application of \(P_t \).

Example: Select a 125 V, very fast-acting PICOTM fuse that is capable of withstanding 100,000 pulses of current (I) of the pulse waveform shown in the Common Pulse Waveforms figure.

The normal operating current is 0.75 A at an ambient temperature of 25 °C.

Step 1–Refer to the Pulse energy model (E) and select the appropriate pulse waveform, which is waveform (E) in this example. Place the applicable value for peak pulse current (Ip) and time (t) into the corresponding formula for waveform (E), and calculate the result, as shown:

\[
E = \frac{1}{2} (I_p^2) t
\]

This value is referred to as the “pulse \(P_t \).”

Nominal melting \(P_t \) is a measure of the energy required to melt the fusing element and is expressed as amperes squared seconds (A\(^2\) s). This nominal melting \(P_t \), and the energy it represents (within a time duration of 8 milliseconds [0.008 second] or less and 1 millisecond [0.001 second] or less for thin-film fuses), is a value that is constant for each different fusing element. Because every fuse type and is expressed as Nominal melting \(P_t \) and \(P_t \) are calculated in this example.

5. Maximum Fault Current
The interrupting rating of a fuse must meet or exceed the maximum fault current of the circuit.

6. Pulses
The general term “pulses” is used in this context to describe the broad category of wave shapes referred to as surge currents, start-up currents, inrush currents, and transients. Electrical pulse conditions can vary considerably from one application to another. Different fuse constructions may not react the same to a given pulse condition. Electrical pulses produce thermal cycling and possible mechanical fatigue that could affect the life of the fuse. Initial or start-up pulses are normal for some applications and require the characteristic of a Slo-Blo® fuse. Slo-Blo® fuses incorporate a thermal delay design to enable them to survive normal start-up pulses and still provide protection against prolonged overloads.

The start-up pulse should be defined and then compared to the current-time curve and \(P_t \) rating for the fuse. Application testing is recommended to establish the ability of the fuse design to withstand the pulse conditions.

Nominal melting \(P_t \) is a measure of the energy required to melt the fusing element and is expressed as amperes squared seconds (A\(^2\) s). This nominal melting \(P_t \), and the energy it represents (within a time duration of 8 milliseconds [0.008 second] or less and 1 millisecond [0.001 second] or less for thin-film fuses), is a value that is constant for each different fusing element. Because every fuse type and is expressed as Nominal melting \(P_t \) and \(P_t \) are calculated in this example.

5. Maximum Fault Current
The interrupting rating of a fuse must meet or exceed the maximum fault current of the circuit.

6. Pulses
The general term “pulses” is used in this context to describe the broad category of wave shapes referred to as surge currents, start-up currents, inrush currents, and transients. Electrical pulse conditions can vary considerably from one application to another. Different fuse constructions may not react the same to a given pulse condition. Electrical pulses produce thermal cycling and possible mechanical fatigue that could affect the life of the fuse. Initial or start-up pulses are normal for some applications and require the characteristic of a Slo-Blo® fuse. Slo-Blo® fuses incorporate a thermal delay design to enable them to survive normal start-up pulses and still provide protection against prolonged overloads.

The start-up pulse should be defined and then compared to the current-time curve and \(P_t \) rating for the fuse. Application testing is recommended to establish the ability of the fuse design to withstand the pulse conditions.

7. Physical Size Limitations
Refer to the product dimensions presented in current Littelfuse product datasheets for specific information.

8. Agency Approvals
For background information about common standards, consult the Standards and Certifications section of this guide. For specific agency approval information for each Littelfuse product, refer to the product datasheets, which can be found on littelfuse.com. As agency approvals and standards may change, rely on the information presented on littelfuse.com as current information.

9. Fuse Features
Consult the specific product features presented on our website at littelfuse.com. For additional information and support, contact your Littelfuse product representative.

10. Fuseholder Rerating
For information about the range of Littelfuse fuseholders and specific features and characteristics, consult with a Littelfuse products representative or visit littelfuse.com.
Standards and Certifications

Littelfuse partners with third-party Certification Bodies (CBs) and Nationally Recognized Testing Laboratories (NRTLs) to offer the market safe and reliable products that will intend and operate in a safe manner. Many end-product standards require fuses that comply with industry safety and performance standards, and a large number of our fuses have obtained such compliance. The resultant certification by third-party CBs and NRTLs are readily available and are easily accessible on Littelfuse.com.

Depending on the end-market, there are different standards that fuses must conform to and various certification schemes they may achieve. It is important to understand the differences between the standards and the different certification schemes that fuses adhere to. The table below lists the most widely used fuse standards along with possible certification schemes they meet:

<table>
<thead>
<tr>
<th>Fuse Certification Schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL Listed/CSA Certified fuse</td>
</tr>
<tr>
<td>Certified to CSA/ANCE/UL 248-1 (North American standards)</td>
</tr>
<tr>
<td>Certified to IEC 60127 series (International standards)</td>
</tr>
<tr>
<td>Certified to EN 60127 series (European standards)</td>
</tr>
<tr>
<td>Certified to GB/T 9364 series (Chinese standards)</td>
</tr>
<tr>
<td>Other certification schemes</td>
</tr>
</tbody>
</table>

A UL Listed/CSA Certified fuse must meet the following criteria:

- **Current-Carrying Capacity**: The fuse shall carry 100% of its rated current (referred to as non-fusing current, In) until temperature stabilization, and the fuse may not open.
- **Verification of Temperature Rise**: In room ambient temperature, a fuse shall carry 100% of its rated current until temperature stabilization. The measured temperature of the fuse contacts cannot exceed 75 °C.
- **Verification of Overload Operation**: 135% (60 minutes maximum clearing time) and 200% (maximum clearance time of 2 minutes for 0.30 A fuses and 4 minutes for 31-60 A fuses).
- **Verification of Operation at Rated Voltage**: The interrupting rating must be 10,000 A at 125 VAC. Fuses may have a rating of 10,000 A at 125 VAC, and a lower interrupting rating at 250 VAC, as found in the table below:

UL Recognition/CSA Component Acceptance

A UL Recognized/CSA Certified fuse also meets the requirements of the standards but with slight parametrical deviations. In general, these programs allow the NRTLs to verify a manufacturer's specifications, and they give fuse manufacturers greater flexibility to design fuses that are specific for end-product applications. For example, an end-product application required an overload current of 210% along with a breaking capacity of 130 A, then the fuse will be verified by the NRTL to meet this specific overload gate and breaking capacity.

International

The International Electrotechnical Commission (IEC) is an international standards organization that prepares and publishes standards for the electrical and electronics industry. They are also responsible for various conformity assessment schemes, such as the EICE (CB Scheme), IECEx, IECQ, and IECRE. The IEC standards applicable to supplemental (miniature) fuses (fuse-links) are under the IEC 60127 series.

The IEC 60127 series of standards is divided into parts, as shown in the following table:

<table>
<thead>
<tr>
<th>IEC 60127 Parts</th>
<th>Standard</th>
<th>Machine Type</th>
<th>Type of Fuses</th>
<th>Minimum IR for Dual-Rated Fuses</th>
<th>Maximum Interrupting Rating (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60127-1</td>
<td>UL Listed/CSA Approved</td>
<td>MSE/MSE-1</td>
<td>General Purpose or Minimum Thermal</td>
<td>1.1–13</td>
<td>130</td>
</tr>
<tr>
<td>IEC 60127-2</td>
<td>UL Listed/CSA Approved</td>
<td>MSE-2</td>
<td>Cartridge fuse links</td>
<td>3.8–10</td>
<td>200</td>
</tr>
<tr>
<td>IEC 60127-3</td>
<td>UL Listed/CSA Approved</td>
<td>MSE-3</td>
<td>Sub-minute fuse links</td>
<td>10–15</td>
<td>750</td>
</tr>
<tr>
<td>IEC 60127-4</td>
<td>UL Listed/CSA Approved</td>
<td>MSE-4</td>
<td>Minimum IR for special applications</td>
<td>15–30</td>
<td>1900</td>
</tr>
</tbody>
</table>

UL Listing/CSA Certification

A UL Listed/CSA Certified fuse meets all the requirements of the standards without any deviations. For example, the standard requires 135% and 200% overload gates, and therefore a fuse must meet those gates for it to be a UL Listed/CSA Certified fuse.

As shown in the preceding table, IEC 60127-1 contains the general requirements that are applicable to all fuses covered in the subsequent parts. Furthermore, subsequent parts contain Standard Sheets (SS) that give specific requirements for applicable fuses. This standard series covers fuses with nominal current ratings up to 10 A, except for IEC 60127-7, which covers fuses with nominal current ratings up to 20 A.

Fuses that comply with the IEC 60127 series of standards meet the following tests:

- **Fuse-Link Temperature**: a step-test* where an initial current (as found in the SS) is applied for 15 minutes and then increased by 10% for another 15 minutes until the fuse opens. The maximum temperature that shall be met in the subsequent parts, as shown in the following table:

IEC 60127 Maximum Temperature Rise

<table>
<thead>
<tr>
<th>Standard</th>
<th>SS</th>
<th>Max. Temp. Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60127-2</td>
<td>All</td>
<td>135 °C for terminations</td>
</tr>
<tr>
<td>IEC 60127-3</td>
<td>All</td>
<td>135 °C for terminations</td>
</tr>
<tr>
<td>IEC 60127-4</td>
<td>4</td>
<td>135 °C for plastic bodies</td>
</tr>
<tr>
<td>IEC 60127-7</td>
<td>1</td>
<td>150 °C for terminations and 135 °C for plastic bodies</td>
</tr>
</tbody>
</table>

For example, comparing the 100% overload gate of an IEC 60127-2 SS 1 (quick-acting) vs IEC 60127-2 SS 9 (time-lag), the clearing time is 0.2 s versus 0.15 s, respectively. It is clear that the SS 1 fuse will clear the overload much quicker than the SS 5 fuse.

The overload gates depend on the subsequent IEC 60127 parts, as shown in the following table:

IEC 60127 Overload Gates

<table>
<thead>
<tr>
<th>Standard</th>
<th>SS</th>
<th>% of Nominal Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60127-2</td>
<td>All</td>
<td>210, 275, 400, and 600</td>
</tr>
<tr>
<td>IEC 60127-3</td>
<td>All</td>
<td>210, 400, and 600</td>
</tr>
<tr>
<td>IEC 60127-4</td>
<td>All</td>
<td>125, 250, 400, and 1000</td>
</tr>
<tr>
<td>IEC 60127-7</td>
<td>All</td>
<td>200, 275, 400, and 1000</td>
</tr>
</tbody>
</table>

As shown in the preceding table, IEC 60127-1 contains the general requirements that are applicable to all fuses covered in the subsequent parts. Furthermore, subsequent parts contain Standard Sheets (SS) that give specific requirements for applicable fuses. This standard series covers fuses with nominal current ratings up to 10 A, except for IEC 60127-7, which covers fuses with nominal current ratings up to 20 A.

Fuses that comply with the IEC 60127 series of standards meet the following tests:

- **Fuse-Link Temperature**: a step-test* where an initial current (as found in the SS) is applied for 15 minutes and then increased by 10% for another 15 minutes until the fuse opens. The maximum temperature that shall be met in the subsequent parts, as shown in the following table:

IEC 60127 Breaking Capacity Terms

<table>
<thead>
<tr>
<th>Standard</th>
<th>SS</th>
<th>Breaking Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60127-2</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>IEC 60127-3</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>IEC 60127-4</td>
<td>All</td>
<td>Intermediate</td>
</tr>
<tr>
<td>IEC 60127-7</td>
<td>All</td>
<td>None as it is per manufacturer specification</td>
</tr>
</tbody>
</table>

To determine the actual time duration, consult the IEC 60127 standard or the fuse datasheet.

- **Breaking Capacity**: IEC 60127 series also assigns terms for breaking capacity. These are shown in the following table:

- **Endurance Test**: a 100-cycle test where a test current is applied for 1 hour and then off for 15 minutes. This is then followed by 1 hour of another current where voltage drop and power dissipation are measured.

North American Fuses vs IEC Fuse-links

It is important to note that a UL Listed/CSA Certified fuse cannot meet the requirements of the IEC 60127 series. This is mainly due to the endurance test requirement of the IEC 60127 series. For example, the Endurance Test for IEC 60127-2 SS 1 requires that the fuse can open at 150% of In*, while UL Listed/CSA Certified fuses must open within 1 hour of 150% of In*.

*Note: In is the nominal current rating of the fuse.
Europe

Fuses intended for the European market must comply with the applicable European directives and their safety objectives. The two main directives they must comply with are the Low Voltage Directive (LVD) and the Restriction of Hazardous Substances (RoHS) Directive. Compliance with the LVD enables the manufacturer to apply the CE mark to fuses as a self-declaration that the products meet applicable European directives. The safety objectives of the LVD are presumed to be addressed if a fuse meets the harmonized standards of the EN 60127 series. The EN 60127 series is based on the IEC 60127 series. The EN 60127 series is also adopted by the European Union. Fuses with the CE mark are not required to be certified by a Certification Body, as long as the fuse design meets the requirements of the EN 60127 series standards. This certification is primarily done to account for end-product standards requiring fuses to be compliant with their basic component standard.

Many Certification Bodies can issue certification to the EN 60127 series, as they all use the same set of standards. Littelfuse primarily obtains certifications for the European market from TÜV Rheinland, VDE, BSI, or Semko / Intertek.

As a result of Brexit (the United Kingdom’s withdrawal from the European Union) in 2020, the United Kingdom adopted a similar product compliance approach as the European Union. Fuses for the UK market must comply with the Electrical Equipment (Safety) Regulations (similar to LVD) and Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (similar to RoHS). Fuses meeting the applicable requirements for the UK market are affixed with the UKCA mark.

Japan

The Japanese Ministry of Economy, Trade and Industry (METI) released the Electrical Appliance and Materials Safety Act (DENAN Law) in 2000, the United Kingdom adopted a similar product compliance approach as the European Union. Fuses for the UK market must comply with the Electrical Equipment (Safety) Regulations (similar to LVD) and Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (similar to RoHS). Fuses meeting the applicable requirements for the UK market are affixed with the UKCA mark.

South Korea

The K60127 series of standards is the adopted national standard in South Korea. There are IEC-based standards and follow the same requirements. Fuses suitable for the South Korean market are marked with the KC mark (see marks below). Littelfuse obtains South Korean certification from Korea Testing Laboratory.

Fuseholders

Certification of fuseholders is also market specific. In North America, CSA/ANECUL 4248-1 is the standard that fuseholders must comply with, while the rest of the world uses IEC 60127-6 (and various National Differences).

China

The Chinese market also bases its national fuse standards on the IEC 60127 series standards. The following table shows the correlation between the two sets of standards:

<table>
<thead>
<tr>
<th>Chinese Standards</th>
<th>IEC Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB/T 8891</td>
<td>IEC 60127-1</td>
</tr>
<tr>
<td>GB/T 8892</td>
<td>IEC 60127-2</td>
</tr>
<tr>
<td>GB/T 8893</td>
<td>IEC 60127-3</td>
</tr>
<tr>
<td>GB/T 8894</td>
<td>IEC 60127-4</td>
</tr>
<tr>
<td>GB/T 8895</td>
<td>IEC 60127-7</td>
</tr>
</tbody>
</table>

If a fuse meets the requirements of the GB/T standard, then the Chinese Compulsory Certification (CCC) mark is used. A voluntary CCC mark can also be used for fuses if certification is needed. Littelfuse utilizes China Quality Certification Center to obtain the necessary Chinese certifications.

Mark

The following table displays the certification schemes and programs that apply to Littelfuse products and the corresponding marks:

<table>
<thead>
<tr>
<th>Certification Scheme/Program</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL Listed for the US Market</td>
<td>UL</td>
</tr>
<tr>
<td>UL Listed for the US and Canada Market</td>
<td>[UL]</td>
</tr>
<tr>
<td>Recognized for the US Market</td>
<td>[Recognized]</td>
</tr>
<tr>
<td>Recognized for the US and Canada Market</td>
<td>[Recognized]</td>
</tr>
<tr>
<td>CSA Certified for the Canada Market</td>
<td>[CSA]</td>
</tr>
<tr>
<td>CSA Component Acceptance for the Canada Market</td>
<td>[CSA]</td>
</tr>
<tr>
<td>TÜV Rheinland for the European Market</td>
<td>[TÜV]</td>
</tr>
<tr>
<td>VDE for the European Market</td>
<td>[VDE]</td>
</tr>
<tr>
<td>BSI for the UK and European Market</td>
<td>[BS]</td>
</tr>
<tr>
<td>Semko/Intertek for the European Market</td>
<td>[Semko/Intertek]</td>
</tr>
<tr>
<td>Japan Market</td>
<td>[Japan]</td>
</tr>
<tr>
<td>China Market—Compulsory</td>
<td>[China]</td>
</tr>
<tr>
<td>China Market—Voluntary</td>
<td>[China]</td>
</tr>
</tbody>
</table>

South Korea

The K60127 series of standards is the adopted national standard in South Korea. They are IEC-based standards and follow the same requirements. Fuses suitable for the South Korean market are marked with the KC mark (see marks below). Littelfuse obtains South Korean certification from Korea Testing Laboratory.

Fuseline

Certification of fuseholders is also market specific. In North America, CSA/ANCEUL 4248-1 is the standard that fuseholders must comply with, while the rest of the world uses IEC 60127-6 (and various National Differences).

Japan

Many Certification Bodies can issue certification to the EN 60127 series, as they all use the same set of standards. Littelfuse primarily obtains certifications for the European market from TÜV Rheinland, VDE, BSI, or Semko/Intertek.

As a result of Brexit (the United Kingdom’s withdrawal from the European Union) in 2020, the United Kingdom adopted a similar product compliance approach as the European Union. Fuses for the UK market must comply with the Electrical Equipment (Safety) Regulations (similar to LVD) and Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (similar to RoHS). Fuses meeting the applicable requirements for the UK market are affixed with the UKCA mark.

Japan

The Japanese Ministry of Economy, Trade and Industry (METI) released the Electrical Appliance and Materials Safety Act (DENAN Law) in 2000, the United Kingdom adopted a similar product compliance approach as the European Union. Fuses for the UK market must comply with the Electrical Equipment (Safety) Regulations (similar to LVD) and Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (similar to RoHS). Fuses meeting the applicable requirements for the UK market are affixed with the UKCA mark.

South Korea

The K60127 series of standards is the adopted national standard in South Korea. They are IEC-based standards and follow the same requirements. Fuses suitable for the South Korean market are marked with the KC mark (see marks below). Littelfuse obtains South Korean certification from Korea Testing Laboratory.

Fuseholders

Certification of fuseholders is also market specific. In North America, CSA/ANCEUL 4248-1 is the standard that fuseholders must comply with, while the rest of the world uses IEC 60127-6 (and various National Differences).

China

The Chinese market also bases its national fuse standards on the IEC 60127 series standards. The following table shows the correlation between the two sets of standards:

<table>
<thead>
<tr>
<th>Chinese Standards</th>
<th>IEC Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB/T 8891</td>
<td>IEC 60127-1</td>
</tr>
<tr>
<td>GB/T 8892</td>
<td>IEC 60127-2</td>
</tr>
<tr>
<td>GB/T 8893</td>
<td>IEC 60127-3</td>
</tr>
<tr>
<td>GB/T 8894</td>
<td>IEC 60127-4</td>
</tr>
<tr>
<td>GB/T 8895</td>
<td>IEC 60127-7</td>
</tr>
</tbody>
</table>

If a fuse meets the requirements of the GB/T standard, then the Chinese Compulsory Certification (CCC) mark is used. A voluntary CCC mark can also be used for fuses if certification is needed. Littelfuse utilizes China Quality Certification Center to obtain the necessary Chinese certifications.

Mark

The following table displays the certification schemes and programs that apply to Littelfuse products and the corresponding marks:

<table>
<thead>
<tr>
<th>Certification Scheme/Program</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL Listed for the US Market</td>
<td>UL</td>
</tr>
<tr>
<td>UL Listed for the US and Canada Market</td>
<td>[UL]</td>
</tr>
<tr>
<td>Recognized for the US Market</td>
<td>[Recognized]</td>
</tr>
<tr>
<td>Recognized for the US and Canada Market</td>
<td>[Recognized]</td>
</tr>
<tr>
<td>CSA Certified for the Canada Market</td>
<td>[CSA]</td>
</tr>
<tr>
<td>CSA Component Acceptance for the Canada Market</td>
<td>[CSA]</td>
</tr>
<tr>
<td>TÜV Rheinland for the European Market</td>
<td>[TÜV]</td>
</tr>
<tr>
<td>VDE for the European Market</td>
<td>[VDE]</td>
</tr>
<tr>
<td>BSI for the UK and European Market</td>
<td>[BS]</td>
</tr>
<tr>
<td>Semko/Intertek for the European Market</td>
<td>[Semko/Intertek]</td>
</tr>
<tr>
<td>Japan Market</td>
<td>[Japan]</td>
</tr>
<tr>
<td>China Market—Compulsory</td>
<td>[China]</td>
</tr>
<tr>
<td>China Market—Voluntary</td>
<td>[China]</td>
</tr>
</tbody>
</table>

If a fuse meets the requirements of the GB/T standard, then the Chinese Compulsory Certification (CCC) mark is used. A voluntary CCC mark can also be used for fuses if certification is needed. Littelfuse utilizes China Quality Certification Center to obtain the necessary Chinese certifications.
About Littelfuse
Littelfuse is a trusted partner to engineers worldwide who seek our technical expertise to accurately and confidently conduct test results. Our global vision, team, and leadership collectively provide the strategic foundation to deliver innovations that help bolster businesses and align with global megatrends.

Littelfuse offers leading technologies in circuit protection, power control, and sensing. We continue to expand our broad and diverse portfolio of products into adjacent markets, including power semiconductors, heavy-duty switches, and magnetic, optical, electromechanical, and temperature sensors, as well as other products that provide safe control and distribution of electrical power. Littelfuse offers a wide variety of product technologies.

Global Footprint
At Littelfuse, our mission is to develop innovative circuit protection, power control, and sensing solutions that meet our customers’ unique needs. This customer-focused philosophy has helped us become the top circuit protection brand in the world.

Our industry-leading product portfolio includes reliable circuit protection, power control, and sensing products that are designed for a variety of markets and applications. We have assembled unparalleled expertise and developed a global footprint that puts our facilities close to our customers and target markets. As our global manufacturing and R&D teams objectively recommend the best circuit protection, power control, or sensing solution for each customer application, they form partnerships that will lead to the development of the next generation of advanced products.

Littelfuse provides:
- Application Expertise
- Global Support
- Operational Excellence
- Technology Innovation
- Collaboration
- Customer Focus

Overcurrent Protection
- Fuses
- Resettable Positive Temperature Coefficient (PPTC) Devices

Overvoltage Suppression
- Gas Discharge Tubes (GDTs)
- TVS Diode Arrays
- PLED Series Open LED Protectors
- SIDACtor® Protection Thyristors
- PulseGuard® ESD Suppressors
- Switching Thyristors
- TVS Diodes
- Varistors
- Power Control
- TRIACThyristors

Power Semiconductors
- Bipolar Devices
- IGBTs
- MOSFETs
- Switching Thyristors
- Silicon Carbide Technology
- Power Semiconductors and ICS
- Discrete and Module Solutions
- Bare Die Devices
- Power Control
- TRIACThyristors
- Fully Engineered Subsystems

Integrated Circuits and Solid-State Relays
- High-Voltage ICS
- Solid-State Relays
- Gate Drivers

Magnetic Sensing
- Reed Switches
- Reed Sensors
- Reed Relays
- Hall Effect Sensors
- Magnetic Actuators

Electromechanical Switches
- Tactile Switches
- Pushbutton Switches
- Keyswitch Switches
- Snap-Acting Switches
- Slide Switches
- Dip Switches
- Detect Switches
- Navigation Switches
- Toggle Switches
- Rocker Switches
- Switchlock Switches
- Rotary Switches

High Reliability Connectors
- Micro-D Connectors
- D-Sub Connectors
- Wire to Wire connectors
- Harness Solutions

Temperature Sensing
- Thermistors
- RTDs
- Digital Temperature Indicators

Additional Resources
Visit Technical Resources at Littelfuse.com
Technical information is only a click away. The Littelfuse Technical Resources page contains datasheets, product manuals, white papers, application guides, demos, online design tools, and more.

An Extension of Your Team
Littelfuse engineers are a phone call away to help identify potential issues and provide product recommendations to solve problems.

Japan Technical Support: +03 6435 0750
Asia Technical Support: +86 512 67613189
North America Technical Support: (800) 999 9445
South America Technical Support: +55 11 2844 4396
Europe Technical Support: +49 421 82 87 3 147

Application and Field Support
Our experienced product and application engineers work step by step with customers from design to installation to determine the best solution. Contact us today:

Littelfuse.com/contactus

©2022 Littelfuse, Inc. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed, manufactured or intended for sale or use in any products or applications, where failure of such products or applications may result in injury or death to persons or to property, or cause destruction of hazardous materials or nuclear reactions. Littelfuse products may not be used in, at or under a product that may not be suitably designed, manufactured or intended for sale or use in such applications. Read complete Disclaimer Notice at Littelfuse.com/disclaimer-electronics.

PolySwitch®, PulseGuard® and SIDACtor® are registered trademarks of Littelfuse, Inc.
Littelfuse products are certified to many standards around the world. To check certifications on specific products, refer to the product datasheet on Littelfuse.com.